

The University Of Cincinnati College of Engineering

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

Seth W. Waldstein
The University of Cincinnati-Main Campus

Miguel A. Barbosa Kortright University of Puerto Rico, Mayagüez Campus

Rainee N. Simons
NASA Glenn Research Center

Outline

Introduction - Motivation

Benefits & Challenges

Wide-Band Reconfigurable Harmonically Tuned Power Amplifier

- Inverse Class-F Design
- Amplifier Fabrication and Results
- Thermal Management
- Dual-Band Multi-Network Design

Power Variability

- Hybrid Coupler
- Balanced Amplifier

Conclusions and Acknowledgements

Introduction - Motivation

- Spectrum management issues due to growing user community
 - Congestion in the X-Band space-to-ground data links is creating the need for cognitive radio capabilities

What do we need from transmit power amplifiers in a cognitive communication system?

- I. Re-configurability
 - High output power; without sacrificing efficiency
 - Operating frequency; without sacrificing efficiency
- **II.** Linearity

Benefits

Higher Efficiency Means

- Saved DC power
- Decreased Heat
 - Efficiency is lost primarily through power dissipation within the transistor junction and conductor losses.
 - Improved Thermal Reliability

Potential to Enable Low Cost Cognitive Telemetry:

Avoids the need for multiple T_x and R_x modules

Applications include:

- NASA Missions
- Small Satellites and Spacecraft
- Military Unmanned Air Vehicles
- Commercial/Amateur Cubesats

Decrease in Heat Sink Mass

Challenges

Efficiency

• High Efficiency SSPA's require harmonic tuning - such as Class-F and Inverse Class-F designs. Matching circuit is complex and inherently narrow band.

Wideband Devices

 Class-F type wideband harmonic tuning techniques used at lower frequencies are unrealizable at X-band

Power Variability

• Amplifiers efficiency drops off when operating below saturation

GaN Transistor Frequency Limitation

- Achieving max PAE with Class-F type amplifiers requires $F_T > 3^{rd}$ harmonic
- Current commercially available transistors have an F_T of 18 GHz
- High F_T of GaN HEMTs comes at the expense of feature size and power density

Wide-Band Reconfigurable Harmonically Tuned PA

Design to provide wideband high efficiency using multinetwork tuning

Inverse Class-F GaN SSPA at X-Band

Harmonics are reflected to reshape the voltage and current waveform at the drain

Fabricated Inverse Class-F Amplifier

DC Drain

Bias

RF Output

Low Freq Stability Circuit GaN **Transistor** 0 Parallel RL **Gate Bias** Choke DC Gate Input

Transistor: Cree CGHV1F006S 6W, DC-18 GHz, 40V, GaN HEMT

Substrate height, h = 0.02 inch & ε_r = 3.0

Tuning of Inverse Class-F Amplifier

IMN after tuning from 8.4 to 16.8 GHz.

of OMN after tuning from 8.4 to 16.8 GHz.

Inverse Class-F P_{out}, PAE, Gain and VSWR

Measured P_{out} and PAE vs. P_{in} V_{DS} = 40 V, V_{GS} = -3.2 V and frequency = 8.45 GHz.

Measured gain and VSWR vs. P_{in} ; V_{DS} = 40 V, V_{GS} = -3.2 V, and frequency = 8.45 GHz

Inverse Class-F Bandwidth

70 MHz bandwidth where Pout > 36 dBm and PAE > 35% 8.315 - 8.385 GHz

PAE and P_{out} vs. Frequency $V_{DS} = 40$ V, $V_{GS} = -3.2$ V; P_{in} ranges 21.5-30.35 dBm, VSWR ranges 2.4 -33

Ground terminals Copper tab 3D printed holder

CW operation required direct contact between transistor belly and heat sink

Thermal Management

Operating conditions observed through thermal imaging

Operating conditions of measured package temp = 95° C:

DC Power Dissipation ≈ 7 W

 Data sheet indicates for package temperature of 95°C, the max allowed power dissipation is ≈ 9 W.

Hence, achieved thermal safety margin of ≈ 22%.

Dual Band Multi-Network Design

Power Variability - Balanced Amplifier

Balanced Amplifier Circuit Topology

Microstrip Branch Line 3-dB Hybrid Coupler

Substrate height, h = 0.02 inch & ε_r = 3.0

Measured vs Simulated Results

Fabricated Balanced Amplifier

P_{in} vs. P_{out} for Single & Balanced MMIC Amplifiers

Balanced amplifier provides a 3dB increase in output power over a single MMIC

Measured P_{out} vs. P_{in} with $V_D = 5$ V and frequency = 8.546 GHz.

Conclusion

- Challenges have been presented for achieving the desired high efficiency wide-band operation needed for a cognitive system at X-band
- An inverse Class-F GaN SSPA operating at 8.4 GHz has been shown to achieve 5W of output power at 40% PAE with a 70 MHz bandwidth of Pout > 36 dBm and PAE >35%.
- A reconfigurable harmonically tuned SSPA has been proposed and justified to provide wideband high efficiency
- A balanced amplifier has been presented for additional consideration in reconfigurable power topologies.